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Abstract. A reinforcement learning algorithm is coupled to a thermal
lattice-Boltzmann method to control flow through a two-dimensional
heated channel narrowed by a bump. The algorithm is allowed to change
the disturbance factor of the bump and receives feedback in terms of
the pressure loss and temperature increase between the inflow and out-
flow region of the channel. It is trained to modify the bump such that
both fluid mechanical properties are rated equally important. After a
modification, a new simulation is initialized using the modified geometry
and the flow field computed in the previous run. The thermal lattice-
Boltzmann method is validated for a fully developed isothermal chan-
nel flow. After 265 simulations, the trained algorithm predicts an aver-
aged disturbance factor that deviates by less than 1% from the reference
solution obtained from 3,400 numerical simulations using a parameter
sweep over the disturbance factor. The error is reduced to less than
0.1% after 1,450 simulations. A comparison of the temperature, pres-
sure, and streamwise velocity distributions of the reference solution with
the solution after 1,450 simulations along the line of the maximum veloc-
ity component in streamwise direction shows only negligible differences.
The presented method is hence a valid method for avoiding expensive
parameter space explorations and promises to be effective in support-
ing shape optimizations for more complex configurations, e.g., in finding
optimal nasal cavity shapes.
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1 Introduction

A deviated septum is a common rhinological pathology, which may cause nar-
rowed upper airway passages blocking the inhaled air. Frequently, removing tis-
sue to widen the nasal airway is a popular surgical intervention to alleviate
a patient’s complaints. The treatment is known as septoplasty. Unfortunately,
patients are often unsatisfied with the outcome of such surgical treatments.
In [22], it is reported that only 68.0% of patients experience improved nasal
breathing and only 55.9% are satisfied after a septoplasty. To increase the suc-
cess rate of the surgery, a method is required that suggests shape modifications
while maintaining two of the main functionalities of the nose: (i) supplying the
lung comfortably with air and (ii) ensuring that the incoming air is sufficiently
heated up before entering the lungs.

These two functionalities can be evaluated from a fluid mechanics point of
view [9,10,12,14,25]. At inspiration, the human diaphragm has to provide suffi-
cient energy in the form of negative pressure to drive a flow. This flow experiences
a pressure loss due to complex anatomical structures causing flow separation,
recirculation zones etc. Comfortable breathing is thus characterized by only a
small pressure loss and a small amount of work the diaphragm has to perform.
While a narrowed nasal passage increases the pressure loss, it favors the ability
to heat up the air due to the higher heat transfer in the vicinity of the wall.
That is, considering these two functionalities, a balanced solution needs to be
found with a low pressure loss while maintaining a high temperature increase.
Hence, a major challenge for a surgeon is to find a suitable shape of the nasal
channels that controls the flow in such a way that a compromise between the
pressure loss and the temperature increase is found.

Recently, reinforcement learning (RL) techniques have shown great potential
to control flow in different applications [3,19,24]. The main concept behind RL is
shown in Figure 1. An agent is trained to interact with an environment. It there-
fore performs an action that changes the state of the environment and receives
feedback from the environment in terms of an observation. An observation may
include all information of a state or only a fraction. Subsequent to an action,
the state is evaluated with respect to a pre-defined criterion. The agent is then
rewarded, depending on its performance in relation to this criterion.

Novati et al. [17] study the swimming kinematics of a leading and a following
fish. They use a deep Q network (DQN) to derive an energy efficient swimming
strategy of the follower. Verma et al. [23] extend the problem from two fishes to
a swarm of fishes and improve the algorithm by using recurrent neural networks
with long-short term memory (LSTM) layers. They report collective energy sav-
ings by an efficient use of the wake generated by other swimmers. In [16], an
agent of a trust region policy optimization (TRPO) algorithm controls the inter-
action of several fluid jets with rigid bodies. Instead of extracting observations
directly from the flow field, a convolutional autoencoder is used to extract low-
dimensional features. In [19], an agent of a proximal policy optimization (PPO)
algorithm is successfully trained to reduce the cylinder drag in a two-dimensional
flow by injecting air at the two minimum pressure locations on the cylinder
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Fig. 1. Interaction between an agent and its environment in an RL algorithm.

contour in an irrotational freestream flow. The PPO algorithm has the stability
and reliability of trust region methods. It is easy to implement and tune [21],
and has been successfully used in previous flow control applications [19,20]. It
is therefore also used in this study. In [24], wing-like shapes are generated by
an asynchronous advantage actor critic (A3C) algorithm that considers aerody-
namic properties while optimizing the shapes. In these examples, numerical flow
simulations are employed to determine the change in an environment after an
action. RL algorithms are, however, also used in experimental fluid dynamics.
Gueniat et al. [4] apply a Q learning strategy to reduce the drag of a cylin-
der by blowing and suction. In [3], an agent learns to reduce the cylinder drag
force by controlling the rotation speed of two smaller cylinders that are located
downstream of a main cylinder.

In the present study, a PPO-based RL agent is trained to find the previously
described compromise between the pressure loss and the temperature distribu-
tion. To simplify the complex shape of a nasal cavity, a two-dimensional channel
case is considered. The septum deviation is modeled by a bump that narrows the
channel. The agent controls the flow by changing the size of the bump. Feedback
on an action is delivered in terms of the aforementioned two fluid mechanical
properties, computed by a numerical flow simulation. For the simulation, the
thermal lattice-Boltzmann (TLB) solver of the m-AIA code [11] (formerly know
as Zonal Flow Solver - ZFS) is employed. The code is developed by the Insti-
tute of Aerodynamics and Chair of Fluid Mechanics, RWTH Aachen University.
In various studies, the TLB method of m-AIA is successfully used to analyze
the fluid mechanical properties of human respiration [9,10,12,14,25]. When the
agent changes the bump, the TLB reads the updated geometry and restarts the
simulation based on the flow field computed in the previous run. To reduce the
degrees of freedom, the agent is only allowed to scale the bump size. Note that
investigating a generic two-dimensional channel flow is the first step to applying
such methods to more complex cases such as the three-dimensional respiratory
flow. The method will be extended to such cases in the future.
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Fig. 2. Processing chain coupling the PPO RL method to m-AIA. Individual steps of
the algorithm described in the text are colored blue. (Color figure online)

The manuscript is structured as follows. Sect. 2 presents the computational
methods. This includes explanations on the channel flow setup, the TLB method,
the boundary conditions, and the RL algorithm. In Sect. 3, a grid refinement
study of the TLB method is conducted and results of the trained agent are
reported. A summary and conclusions are given together with an outlook in
Sect. 4.

2 Numerical Methods

The shape of the bump in the channel is automatically modified using a PPO
algorithm, which is coupled to m-AIA. The coupled approach follows the numer-
ical processing chain depicted in Fig. 2. The individual components of this chain
are explained in more detail in the following.

Section 2.1 explains the computational setup and how the channel domain is
generated by an automated shape generator (SG). Subsequently, Sect. 2.2 intro-
duces the TLB method and the relevant boundary conditions. Finally, Sect. 2.3
describes the PPO algorithm and specifies the role of each component of the
processing chain.

2.1 Computational Domain and Shape Generator

A sketch of the computational domain of the channel with the streamwise and
wall-normal directions x and y is shown in Fig. 3. It is characterized by the
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Fig. 3. Two-dimensional channel case setup and examples of the bump for three dis-
turbance factors.

channel height H = 20, the channel length L = 10H, and a bump at the lower
wall. The bump contour B is computed by transforming the bump function

b(i) = e

(
1

( i
100 )2−1

)
, i = Z ∈ [−99; 99] (1)

into the coordinate system of the channel. That is, the bump function b(i) is
multiplied by the disturbance factor R = h·e. The control variable i is multiplied
by R/100 and shifted in horizontal direction by adding the shift factor l, i.e.,

B =

⎛
⎜⎜⎝

Bx(i)

By(i)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

R
100 i + l

R · b(i)

⎞
⎟⎟⎠ . (2)

Figure 3 shows examples of the bump for R = 10, R = 20, and R = 30. For
R = 0 the bump vanishes. The agent changes the size of the bump by varying
the quantity R.

The Reynolds number Rech of the flow is based on the channel height H,
the kinematic viscosity ν, and the bulk velocity v. It is set to Rech = 100.
The flow reaches its maximum velocity vmax at the smallest cross section of
the channel. Obviously, for increasing R, vmax also increases. The TLB is due
to its derivation limited to quasi-incompressible flows at small Mach numbers
Ma = vmax/cs � 1, where cs is the speed of sound. To avoid reaching the
incompressibility limits of the TLB, a maximum disturbance factor of Rmax = 33
is chosen to guarantee numerically stable and valid simulations.

As illustrated in Fig. 2, the SG automatically generates the channel surface as
a function of R. The output is handed to the TLB method for the computation
of the corresponding flow field.

2.2 Thermal Lattice-Boltzmann Method

The TLB operates on hierarchical unstructured Cartesian meshes, which are
generated using a massively parallel grid generator [13]. Starting with an initial
square cell that covers the entire geometry, the mesh is created by iteratively
refining the initial cell and all subsequent generated cells. The refinement splits
each cell into four equally-sized child cells. At every iteration, cells located out-
side of the geometry are deleted and parent-child relations are stored. This pro-
cedure is repeated until the maximum refinement level is reached. Subsequently,
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cells marked for local grid refinement are refined similarly. The hierarchy is rep-
resented by a quad-tree.

The TLB method is a highly parallelizable algorithm, which is well suited
for efficiently simulating complex flows in intricate geometries [11,15]. It solves
the discrete formulation of the Boltzmann equation [6]

fi(r + ξi · δt, t + δt) = fi(r, t) +
1
τf

· (feq
i (r, t) − fi(r, t)), (3)

where r is the location vector, t and δt denote the time and the time increment,
ξi is the vector of the discrete molecule velocity in the direction i ∈ {0, . . . , 8},
and fi is the corresponding discrete particle probability distribution function
(PPDF). Furthermore, the relaxation time is formulated as τf = ν/c2s. The
discrete Maxwellian distribution functions feq

i are given by

feq
i (r, t) = ρ · tp ·

(
1 +

v · ξi

c2s
+

v · v
2c2s

(
ξi · ξi

c2s
− δ

))
, (4)

where ρ is the fluid density, v is the macroscopic velocity vector, δ is the Kro-
necker delta, and tp is a direction-dependent coefficient. The discretization model
chosen for the two-dimensional simulations conducted in this study is the well
known D2Q9 model [18].

To solve the decoupled energy equation, a passive scalar transport equation
of the temperature T is used. That is, a second set of PPDFs g(r, t) describing
the diffusion and convection of the temperature is solved on the same lattice.
The thermal PPDFs are calculated using [9]

gi(r + ξi · δt, t + δt) = gi(r, t) +
1
τt

· (geq
i (r, t) − gi(r, t)), (5)

where τt = α/c2s is the thermal relaxation based on the thermal conductivity α
and cs. The equilibrium distribution functions geq

i are defined similarly to feq
i

by

geq
i (r, t) = T · tp ·

(
1 +

v · ξi

c2s
+

v · v
2c2s

(
ξi · ξi

c2s
− δ

))
, (6)

where v is the macroscopic velocity vector calculated from the moments of the
PPDFs fi(r, t), i.e. by solving

ρ =
8∑

i=0

fi(r, t) (7)

ρv =
8∑

i=0

ξi · fi(r, t). (8)

The temperature is obtained from the moments of the PPDFs gi(r, t)

T =
8∑

i=0

gi(r, t) (9)
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and the pressure is calculated using the equation of state for an ideal gas

p = ρ · c2s. (10)

At the inlet, the velocity profile of a fully developed channel flow is prescribed,
the density is extrapolated from the inner cells, and the temperature is set to
unity. Additionally, a constant pressure is prescribed at the outlet of the channel.
Here, the velocity and the temperature are extrapolated from the inner cells.
The wall boundary conditions are based on a second-order accurate interpolated
bounce-back scheme for the velocity [1] and an isothermal wall scheme for the
temperature [8].

2.3 Proximal Policy Algorithm

Before the training is started, the SG creates surfaces with R = Rmin and R =
Rmax, and the corresponding flow fields are computed with the TLB method.
From these results, the area-averaged pressures and temperatures at the in- and
outlets are calculated according to

p̄{in,out} =
1
N

N∑
n=0

p{in,out}(n) (11)

T̄{in,out} =
1
N

N∑
n=0

T{in,out}(n), (12)

where n = 0, . . . , N is the running index of the cells in the y-direction at the in-
or outlets and p{in,out}(n) and T{in,out}(n) are the pressure and the temperature
at cell n, c.f. Figure 2. In the training of the PPO algorithm, these quantities
are used to calculate the area-averaged normalized pressure at the inlet and
area-averaged normalized temperature at the outlet

p̂in =
p̄in(R) − p̄in(Rmin)

p̄in(Rmax) − p̄in(Rmin)
(13)

T̂out =
T̄out(R) − T̄out(Rmin)

T̄out(Rmax) − T̄out(Rmin)
. (14)

Two phases take turns in the training. In the first phase, a batch, the agent
interacts with the environment. A batch is composed of E = 3 episodes. In
each episode, the agent performs W = 10 interactions, yielding a total number
of K = 30 interactions per batch. The workflow of the first phase is shown
in Fig. 2. Its starting point is step (1), where a surface is created by the SG
with Rinit = 10. In step (2), the flow field is computed for this surface. The
state s is then complemented with p̂in, T̂out, and R̂ in step (3), where R̂ =
(R − Rmin)/(Rmax − Rmin). The complete information of s is passed as an
observation to the agent.
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The actor network uses the observation as input in step (4). The input layer is
followed by two fully connected layers with 64 neurons each, and a final layer with
a single neuron. The two fully connected layers have rectified linear unit (ReLU)
activation functions. The final layer has a tanh activation function, mapping the
output to the interval [−1; 1]. The output then functions as a mean to generate
a Gaussian normal distribution with a standard deviation of σ = 0.5.

From this distribution, the normalized action a is sampled close to the mean
of the distribution. The action in form of a change of the disturbance factor
ΔR is computed by ΔR = βa, with β = 3 to avoid relatively large changes of
the disturbance factor and guarantee numerically stable simulations. The new
disturbance factor is then determined by Rnew = R+ΔR. If the new disturbance
factor exceeds Rmin or Rmax, an episode ends.

In step (5), the SG generates a new surface with the current disturbance
factor. Subsequent to creating the surface, new flow properties are computed
using the TLB method in step (6), which restarts from the results of the previ-
ous flow field. With these properties, a reward r is calculated in step (7). The
agent is rewarded according to a pre-defined criterion. With the criterion of the
current case the agent is trained to change R such that the pressure loss and the
temperature gain between the inlet and outlet are rated equally important.

Note that an equal consideration of both properties is not the only existing
criterion definition. In case of a septoplasty, surgeons might weight the properties
according to their preferences. The current criterion is expressed by the following
reward function

r =
(μ − ||p̂in − 1| − T̂out|)κ

μκ
, (15)

where μ = 2 is the theoretical maximum of the second term of the numerator,
keeping the reward positive. The reward is scaled by an exponent κ and normal-
ized by μκ. The exponent must be chosen such that high weights are assigned
on higher rewards, but at the same the gradients between lower rewards are not
too small. A preliminary study revealed an exponent of κ = 5 to function best
with the current setup.

If the agent exceeds Rmin or Rmax, it is punished with r = 0. If the agent
stays within Rmin and Rmax, and reaches a target zone of ||p̂in − 1| − T̂out| ≤ λ,
an episode is stopped. In case of surgical interventions, surgeons could specify λ
depending on their tolerance. Here, a target zone of λ = 0.1 is chosen. If the agent
is not interrupted, the processing chain continues with step (4) and progresses
until an episode ends. To assess long-term rewards, for each interaction in an
episode, the rewards-to-go rtg are computed by

rtg(w) =
W∑

j=w

γj−wr(j). (16)

The discount factor γ weights late rewards in an episode. The higher γ, the more
weight is assigned to rewards received at later interactions. Here, a discount
factor of γ = 0.95 is used [2]. For each interaction, rtg and the probabilities of a
normalized action aprob are collected.
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In the second phase, actor and critic networks are trained based on the col-
lected data from the first phase. The critic network differs from the actor network
at the final layer, where it has a linear activation. The output of the critic network
is the value V . Before actor and critic losses can be computed, the advantage
estimates A are calculated for all interactions of a batch by

A = rtg − V. (17)

The actor loss is determined by the loss function

Lact =
1
K

K∑
k=0

−min

(
aprob(k)
atr

prob(k)
A(k), clip(

aprob(k)
atr

prob(k)
, 1 − ε, 1 + ε)A(k)

)
, (18)

where atr
prob(k) is the probability of an action at interaction k that is predicted

while training the actor network. In the clip-function, the probability ratio is
clipped at 1 ± ε, depending on whether A(k) is positive or negative. A clipping
parameter of ε = 0.2 is applied [21]. The critic loss is computed by

Lcrit =
1
K

K∑
k=0

(V tr(k) − rtg(k))2, (19)

where V tr is predicted while training the critic network. After each batch, the
network updates are repeated five times. Weights are updated by an adaptive
moments (ADAM) optimizer [7]. The ADAM optimizer adjusts the learning rate
LR by considering an exponentially decaying average of gradients in the previous
update steps. The learning rate is initialized with LR = 0.005.

3 Results

In this section, the numerical methods introduced in Sect. 2 are employed to
investigate the flow through a channel constricted by a bump, cf. Fig. 3. Before
the corresponding results of the performance of the RL algorithm are presented
in Sect. 3.2, the simulation method is validated using a generic test cases in the
subsequent Sect. 3.1.

3.1 Validation of the Simulation Method

For validation purposes, a two-dimensional fully developed isothermal channel
flow is simulated. The TLB approach was already validated by Lintermann et
al. in [12].
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Fig. 4. Pressure distribution along the centerline of the channel for several refinement
levels Γ ∈ {8, . . . , 11} at Rech = 100. Additionally, the analytical solution is given.

The calculated pressure loss of the fully developed channel flow is compared
to the analytical solution given by

Δp =
8vmaxρνL

H2
= 12

v2ρ

Rech

L

H
, (20)

with the density ρ, the maximum channel velocity magnitude vmax = (3/2)v,
and the channel length L. The solution is derived from the well-known Hagen-
Poiseuille law [5]. The channel geometry equals the geometry shown in Fig. 3
with R = 0. The Reynolds number is again set to Rech = 100. The boundary
conditions at the inlet, the outlet, and the channel walls are set according to the
description in Sect. 2.2. The pressure distributions along the centerline of the
channel, obtained from flow simulations, are plotted for different mesh refinement
levels against the analytical solution in Fig. 4. For refinement level Γ = 8, the
channel is resolved by 256 × 26 cells. The number of cells per direction doubles
with each refinement level increase. At the maximum considered level Γ = 11, the
channel is resolved by 2,048×208 cells. Figure 4 shows that the pressure gradient
in the middle of the computational domain remains the same for all refinement
levels. However, near the in- and the outlets, the pressure curves differ slightly.
In these areas, only simulations with a refinement level of Γ ≥ 10 produce
sufficiently accurate results. Therefore, a uniform refined mesh at refinement
level Γ = 10 is chosen to test the performance of the RL algorithm, see Sect. 3.2.

3.2 Comparison of Simulative and RL-Based Results

Simulations are conducted on 2 nodes with 24 cores per node on the supercom-
puter CLAIX at RWTH Aachen University. In simulations at the beginning of
an episode around 3 min are needed to reach a solution that is independent from
the initial condition. After that, the simulations time is reduced to 90 s, since
simulations can be restarted from previous results and therefore reach such a
solution faster. Training time for the actor and critic networks are negligible
compared to the simulation time.
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Fig. 5. Temperature and pressure development of the channel flow for different distur-
bance factors R of the bump.

To analyze the behavior of the RL algorithm, a number of 3, 400 simulations
are conducted, in which the disturbance factor of the bump is continuously
increased from R = Rmin to R = Rmax in steps of 0.01, to achieve an accuracy
of two decimal places. For each simulation, the pressure in the form of |p̂in − 1|
and the temperature T̂out are evaluated. Figure 5 shows that both graphs cut each
other for a simulated disturbance factor of Rref = 25.58. At this location, |p̂in−1|
and T̂out have the same value which perfectly fulfills the criterion formulated
in Eq. (15). The corresponding results are therefore defined as the reference
solution.

The temperature, the static pressure, and the velocity distributions for
R = 20, Rref , and R = 30 are shown in Fig. 6. On the one hand, it is obvi-
ous from Fig. 6a that the temperature increases in the vicinity of the bump,
especially in its wake region. While the increase is upstream of the bump lower,
the temperature towards the outlet, downstream of the bump, increases stronger.
In case of Rref , the average temperature at the outlet T̂out reaches 98.63 % of
the wall temperature. On the other hand, a strong drop of the pressure due to
the acceleration of the flow in the constricted region is visible in Fig. 6b. With an
increasing bump size, the inlet pressure is raised, i.e., a maximum inlet pressure
is obtained at R = 30. Large velocities are observed in the constricted region,
see Fig. 6c. Consequently, the maximum streamwise velocity components are
also found at R = 30. For all configurations a recirculation zone with negative
streamwise velocities is observed, indicating flow separation. The zone increases
with larger bump sizes.

The performance of the agent that uses the processing chain from Fig. 2 is
evaluated in terms of the averaged disturbance factor at each batch

R̂t(b) =
1

Et(b)

Et(b)∑
b=0

Rt, (21)

where Rt is the target disturbance factor in case the target zone is reached in an
episode, and Et(b) is the number of episodes in which the target zone has been
reached from the beginning of the training until batch b. Figure 7 shows R̂t(b)
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Fig. 6. Simulation results for three channel geometries with R ∈ {20, Rref , 30}, where
Rref = 25.58.

and the error of R̂t(b) in relation to Rref . At batch 6, after 177 simulations, the
agent hits the target zone for the first time at R̂t(6) = 24.62, yielding an error of
3.7%. After 265 simulations in 10 batches, the error remains below an acceptable
error of 1.0% for the rest of the training. The averaged disturbance factor is
Rt(10) = 25.32. At 69 batches, or 1, 450 simulations, an averaged disturbance
factor of Rt(69) = 25.61 misses Rref by less than only 0.1%. From here on the
error remains below 0.1% for the rest of the training.
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Fig. 8. Quantitative results for different R ∈ {20, Rref , R̂t(69), 30}.
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A further quantitative analysis is performed by comparing the distribu-
tions of the static pressure, the temperature, and the streamwise velocity
along the line with the maximum streamwise velocity component for R ∈
{20, Rref , R̂t(69), 30}. The results are depicted in Fig. 8a and the correspond-
ing lines in Fig. 8b. Plots of all fluid mechanical properties for the reference
solution and the RL-based method show an almost perfect alignment proving
the RL-based processing chain to be a valid alternative to using a brute-force
parameter sweeping.

4 Summary, Conclusion, and Outlook

A PPO algorithm is combined with a TLB simulation method to change the
shape of a heated narrowed channel, while considering the pressure loss and
temperature difference between the inflow and outflow region. The algorithm
controls the flow by changing the disturbance factor of a bump. It is capable
of finding a target disturbance factor that weights both fluid mechanical prop-
erties equally. Averaging the target factor over multiple tries yields a deviation
from the reference disturbance factor, which is determined iteratively with 3,400
numerical simulations, of less than 1.0% after 265 simulations in 10 batches, and
less than 0.1 % after 1,450 simulations in 69 batches. A comparison of the tem-
perature, pressure, and streamwise velocity distributions between the predicted
and the reference solutions along the line of the maximum velocity component
in streamwise direction shows only negligible differences.

Surgical interventions in rhinology often include the removal of anatomical
structures. Such removals influence the capability to breathe comfortably. Ide-
ally, the pressure loss and the heating capability of a nasal cavity are balanced
such that respiration is energy efficient and the air reaches body temperature.

The current results build the foundation for applying RL algorithms to shape
optimization problems in rhinology. To close the gap between the simplified chan-
nel flow and a nasal cavity flow, the method will be extended to more complex
flow configurations such as two-dimensional domains with multiple bumps or
three-dimensional geometries like a stenotic pipe. The increase of the domain
complexity will lead to enlarged action and state spaces, and variations of the
actor and critic networks can be investigated. Furthermore, the PPO algorithm
will be compared with other RL algorithms. It is the ultimate vision, to develop
a tool that assists surgeons in their decision making process.
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